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Effect of Genetic Heterogeneity and Assortative Mating on Linkage
Analysis: A Simulation Study
Catherine T. Falk
The Lindsley F. Kimball Research Institute of The New York Blood Center, New York

Summary

Linkage studies of complex genetic traits raise questions
about the effects of genetic heterogeneity and assortative
mating on linkage analysis. To further understand these
problems, I have simulated and analyzed family data for
a complex genetic disease in which disease phenotype is
determined by two unlinked disease loci. Two models
were studied, a two-locus threshold model and a two-
locus heterogeneity model. Information was generated
for a marker locus linked to one of the disease-defining
loci. Random-mating and assortative-mating samples
were generated. Linkage analysis was then carried out
by use of standard methods, under the assumptions of
a single-locus disease trait and a random-mating
population. Results were compared with those from
analysis of a single-locus homogeneous trait in samples
with the same levels of assortative mating as those
considered for the two-locus traits. The results show that
(1) introduction of assortative mating does not, in itself,
markedly affect the estimate of the recombination
fraction; (2) the power of the analysis, reflected in the
LOD scores, is somewhat lower with assortative rather
than random mating. Loss of power is greater with
increasing levels of assortative mating; and (3) for a
heterogeneous genetic disease, regardless of mating type,
heterogeneity analysis permits more accurate estimate of
the recombination fraction but may be of limited use
in distinguishing which families belong to each
homogeneous subset. These simulations also confirmed
earlier observations that linkage to a disease “locus” can
be detected even if the disease is incorrectly defined
as a single-locus (homogeneous) trait, although the
estimated recombination fraction will be significantly
greater than the true recombination fraction between the
linked disease-defining locus and the marker locus.
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Introduction

Linkage studies of complex (i.e., non-Mendelian) genetic
traits, such as psychiatric disorders, have raised ques-
tions about the effect of such problems as genetic het-
erogeneity and assortative mating on the outcome of
linkage analysis. It is of great interest to try to identify
loci that contribute to the genetic susceptibility of such
traits as schizophrenia, affective disorder, Alzheimer dis-
ease, and countless others, but such efforts encounter
difficulties that are not necessarily found in the analysis
of Mendelian traits. For example, because of the known
problems of genetic heterogeneity, it is often assumed
that linkage studies of a single large pedigree will be
most effective, since it is more likely that a single, ho-
mogeneous form of the disease will be segregating in the
entire pedigree (e.g., see Egeland et al. 1987). Unfor-
tunately, as that study and others have shown, identi-
fication of single large pedigrees does not necessarily
make the task easier, particularly when one is dealing
with relatively common traits. In fact, as Durner et al.
(1992) have shown, sampling �high density� pedigrees
may increase the probability of finding intrafamilial het-
erogeneity. In the Egeland et al. study, initial results iden-
tified a potential linkage between affective disorder and
HRAS1 on chromosome 11. However, the initial LOD
score (Z) of 4.32 did not hold up when new data were
added to the analysis, and ultimately the evidence for
linkage declined (Kelsoe et al. 1989). Various explana-
tions for such fluctuations in results, even within a single
large pedigree, have been proposed; these explanations
include genetic heterogeneity, multilocus traits analyzed
as single-locus traits, and nonrandom (i.e., assortative)
mating for the trait.

We do not yet fully understand what the effect on
linkage analysis will be if we assume a single-locus dis-
ease trait when disease state is actually determined by
more than one locus and/or more than one genotype,
although several simulation studies have been under-
taken that explore the consequences of such assumptions
and shed light on the problems (e.g., see Greenberg
1990; Durner et al. 1992; Goldin 1992; Vieland et al.
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Figure 1 Representative examples of five family structures used
in simulation studies.

1992a, 1992b, 1993). Similarly, if there is nonrandom
mating with respect to a disease trait (e.g., if individuals
with the disease phenotype tend to mate assortatively,
as is sometimes observed with respect to psychiatric
traits [Merikangas 1982]), it is not known what effect,
if any, this has on the outcome of a linkage analysis.
Assortative mating has the effect of increasing the pro-
portion of bilineal families in a sample—that is, families
in which a trait is introduced into a pedigree on both
the maternal and paternal sides. Many linkage analyses
that have been performed on complex diseases have
made use of one of the standard computer programs for
linkage analysis. These programs were originally written
under certain assumptions, some of which are violated
when one is dealing with complex (non-Mendelian)
traits. For example, the programs assume that the family
sample is from a random-mating population and that
the disease trait is determined by alleles at a single locus
with a known mode of inheritance. More recently, pro-
grams have been developed that allow for a two-locus
disease trait (Schork et al. 1993), and other methods of
analysis, such as nonparametric sib-pair analysis, are not
constrained by these assumptions. The problem of an-
alyzing the data under the wrong assumption about
mode of inheritance has been addressed by others (e.g.,
Greenberg and Hodge 1989), but questions remain
about such characteristics of the data as assortative mat-

ing and genetic heterogeneity. It is possible that some of
the inconsistencies and contradictions in results of link-
age studies could be due to the failure to account for
the proper underlying parameters.

To address these questions and gain further under-
standing of the problems, I have simulated family data
for a complex genetic disease in which the disease phe-
notype is specified by a two-locus disease-determining
model, the two disease-determining loci being unlinked
to one another. Additional information on marker loci
was generated to enable us to ask questions about the
results of linkage analysis when only one of the two
disease-determining loci is linked to the marker locus/
loci. Both random-mating and assortative-mating sam-
ples were generated. Linkage analysis was then per-
formed by use of standard methods that assume (a) a
single-locus disease trait and (b) a random-mating
population. Results were also compared with those from
analysis of a single-locus homogeneous trait in samples
with the same levels of assortative mating as those con-
sidered for the two-locus traits.

Methods

Computer simulation methods were developed that
are capable of generating family data for disease models
in which two or more unlinked loci contribute to disease
status. In the present paper, two two-locus models are
studied. Five family structures are used, ranging from
simple two-generation families to relatively large four-
generation pedigrees. One sample realization of each
pedigree structure is shown in figure 1. The number of
children in a sibship ranges from three to six. The size
is chosen at random, with small sibships having higher
probabilities. Thus the number of sibs may vary from
realization to realization, but the overall structure of the
pedigrees remains the same. For all models, genetic in-
formation is generated for the parents, on the basis of
input allele frequencies at two disease-determining loci,
B and C, as well as at one marker locus, A. Loci B and
C have two possible alleles, giving rise to the two-locus
genotypes and phenotypes shown in tables 1 and 2. In
these examples, marker locus A also has two alleles.
Other simulation runs, with more alleles at marker locus
A, gave qualitatively similar results, although the num-
ber of informative families in a data set increased (data
not shown). Marker A is linked, with a specified recom-
bination fraction (v), to disease locus B. Locus C is not
linked to either A or B. Once parental genotypes are
selected, the remaining members of the family are gen-
erated on the basis of family structure and size, the rules
of Mendelian segregation, and the v value between the
marker locus and the linked disease locus. In the sets of
families in which assortative mating occurs, it is assumed
that there is a certain probability, b, that pairs with con-



Falk: Linkage Analysis and Heterogeneity 1171

Table 1

Input Parameters for Generation of Families for Disease
Model 1

A. Disease Status for Two-Locus Genotypesa

LOCUS C

LOCUS B

11 12 22

11 0 0 0
12 0 0 1
22 0 1 1

B. Allele Frequencies for Loci A–C

ALLELE

LOCUS

A B C

1 .40 .70 .60
2 .60 .30 .40

C. Expected Frequencies for Two-Locus Disease Genotypesb

LOCUS C

LOCUS B

11 12 22

11 .18 .15 .03
12 .23 .20 .04 (D)
22 .08 .07 (D) .01 (D)

a Data are probabilities of being affected.
b (D) � disease; all other genotypes are normal.

Table 2

Input Parameters for Generation of Families for Disease Model 2

A. Disease Status for Two-Locus Genotypesa

LOCUS C

LOCUS B

11 12 22

11 0 1 1
12 1 1 1
22 1 1 1

B. Allele Frequencies for Loci A–C

ALLELE

LOCUS

A B C

1 .40 .98 .97
2 .60 .02 .03

C. Expected Frequencies for Two-Locus Disease Genotypes

LOCUS C

LOCUS B

11 12 22

11 .90 (n)a .04 (d2) !.0009
12 .06 (d1) .002 (d3) !.0009
22 !.0009 !.0009 !.0009

a n � normal.

cordant disease phenotypes will mate and a probability,
, that pairs will mate at random. This simulates1 � b

data based on models presented by, for example,
O’Donald (1960) and Falk (1971), reflecting a sample
from a population in which a fraction, b, of the popu-
lation consists of mating pairs exhibiting assortative
mating and the remaining fraction, , mates at ran-1 � b

dom. To implement this, a random number is chosen to
determine whether a pair mates at random or assorta-
tively. If the choice is random mating, generation of the
nuclear family proceeds as described above; if the choice
is assortative mating, then the disease phenotype of the
second parent selected must match the first. Each disease
genotype randomly generated is tested and is retained
only if a phenotypic match is obtained. Thus the parents
selected may have different disease genotypes but must
be concordant for disease phenotype. This can be de-
scribed as phenotypic assortative mating, in which af-
fected individuals mate more often than would be ex-
pected in a random-mating population but in which the
choice of mate is based on the phenotype and not on
the underlying genetic basis of the disease in the two
individuals (Spence et al. 1993). The simulation pro-
grams were written in a general way, so that more than
two disease-determining loci can be specified, thereby
producing any desired disease model, and so that ad-
ditional marker genotypes, linked to one or more of the
disease loci, can be generated.

Two two-locus disease models have been considered

here. The first is a two-locus threshold model; the second
is a heterogeneity model, in which a dominant pheno-
type at either of the two disease loci results in disease.
In each case the v value between the marker locus A and
the linked disease locus B is .02. For purposes of com-
parison, a single-locus homogeneous model is included,
in which disease locus B alone determines disease status
and is again linked to locus A, with . The explicitv � .02
details of each of the models are given below. For each
model, the generation of family material to be analyzed
was done in the same way.

For each of the five family structures and for each of
five mating schemes, including random mating (which
is equivalent to ) and four levels of assortativeb � .0
mating, 40 replicates of 50 families each were generated.
Families (or pedigrees) were selected for inclusion only
if they had at least two affected individuals in at least
one sibship, thus assuring that the families would be
somewhat informative for linkage analysis. The mating
schemes represent five levels of assortative mating, where

(for random mating), .2, .4, .6, or .8. After it wasb � .0
determined that family structure did not appear to have
an effect on the estimate of v (see Results), families of
all five family structures were pooled for random mating
and for each level of assortative mating. The 10,000
resulting families for each mating scheme were then re-
sampled in 100 replicates of 100 families each, for each
of the genetic models. A second, independent run was
performed for each of the two-locus disease models and
for the one-locus model, in order to ascertain the sta-
bility of the results. Results from the two runs for each
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model were comparable and were therefore combined,
resulting in 200 replicates of 100 families each, for each
model and for each mating scheme. The results presented
are based on these final sets of 200 replicates.

Disease Model 1

Table 1a shows the disease status for each two-locus
genotype at loci B and C, the two disease-determining
loci. Individuals with at least three type-2 alleles at the
two loci will have the disease; all other genotypes are
normal. Allele frequencies at loci B and C were chosen
so as to result in a disease prevalence of slightly 1.10 in
the population from which the sample was selected. Ta-
ble 1b shows the input values for the allele frequencies
at the three loci A–C, and table 1c gives the expected
frequencies of the two-locus genotypes. This model re-
sults in the appearance of an intermediate mode of in-
heritance with respect to disease phenotype, with a frac-
tion of disease “heterozygotes” being affected and the
remainder being normal.

Disease Model 2

Table 2a shows the disease status for the two-locus
genotypes for the heterogeneity model. When appro-
priate allele frequencies are chosen for loci B and C, the
population prevalence is again set at ∼.10. Table 2b
shows the input values for the allele frequencies at the
three loci A–C. The disease gives the appearance of a
dominant disease, with an ∼.05 disease-allele frequency
in the population. By construction, only three of the
disease genotypes have frequencies 1.001. Table 2c rep-
resents these as d1 (B11/C12), d2 (B12/C11), and d3
(B12/C12). Of these, the two most frequent are types
d1 and d2. Only the second of these, d2, with a heter-
ozygote genotype at locus B,will be informative for link-
age to the marker locus A, which is linked to B; the first,
d1, is homozygous for B and thus is uninformative for
linkage to A; and the third, d3, is a small, mixed class
that may contribute a small amount of linkage infor-
mation. This model is constructed in such a way that
we can understand the consequences of performing link-
age analysis by use of disease phenotypes, when we do
not know the underlying genotype(s). Without prior
knowledge of the nature of the trait, we can only see
that the data suggest a dominant form of inheritance.
We might, therefore, first analyze the data by assuming
a single, dominant, disease locus. On the basis of the
results, we might then look for genetic heterogeneity. By
knowing the underlying disease genotypes—d1, d2, and
d3—we can see how reliable our analysis will be.

Homogeneous Disease Model

In order to separate the effects of the two-locus disease
structures from those of assortative mating, families

were also generated under the assumption that only lo-
cus B, linked to marker locus A with , determinesv � .02
the disease state. Samples were generated as described
above, for a combined total of 200 replicates of 100
families each, for each of the five values of b. It was
assumed that locus B acts as a simple dominant in de-
termining the disease state. Disease prevalence in the
population was again set at ∼.10.

Testing the Reliability of Generated Data

In order to be sure that the families generated reflected
the input parameters reliably, I looked at population
statistics, including parental-allele frequencies, disease-
phenotype frequencies, and mating-class frequencies, in
both the total (unselected) set of families generated and
in the families selected for linkage analysis (i.e., families
with at least two affected individuals in a sibship).

Methods of Analysis

Once the data were tested and considered to be reli-
able, linkage analysis was performed by use of LIPED
(Ott 1974, 1976). The families were analyzed on the
assumption that there was a single disease locus. A par-
tially dominant mode of inheritance was assumed for
model 1, and a dominant mode of inheritance with com-
plete penetrance was assumed for both model 2 and for
the single-disease-locus homogeneous model. Allele fre-
quencies and other parameters of the disease model were
estimated from the selected family material. Compari-
sons were then made between linkage results for the five
levels of assortative mating, with , .2, .4, .6, orb � .0
.8. For disease model 2, tests of heterogeneity were per-
formed by use of the computer program HOMOG (Ott
1984), and estimates were made of both the level of
heterogeneity and the v value for the subset of families
informative for linkage. Additionally, because the infor-
mation on the true disease genotype was known, it was
possible to estimate the reliability of predicting the dis-
ease-phenotype subclass to which each family belonged,
on the basis of the posterior probability of linkage.

Results

Population Statistics for Genetic Model 1

Population statistics, generated to test the reliability
of the simulations, showed that in all cases the observed
frequencies in the unselected samples were in very good
agreement with the expected values, with no significant
x2’s (data not shown). The selected samples show the
expected increase in the frequency of disease-determin-
ing alleles, affected phenotypes, and matings involving
one or two affected parents. Reassuringly, however, the
allele frequencies of the uninvolved marker locus A re-
mained close to the input values. No sex differences were
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Table 3

Observed and Expected Frequencies of Founder Pairs Based on
Disease Phenotypes: Disease Model 1 (200 Matings)

TYPE OF MATING AND POPULATION

MATING CLASS

a#a a#na n#na

Random:
Expected .016 .219 .766
Unselected .019 .208 .773
Selected .035 .334 .631

20% Assortative:b

Expected .038 .175 .788
Unselected .038 .177 .785
Selected .074 .299 .627

a n � normal.
b .b � .2

Figure 2 Results of linkage parameter estimates for single-locus
homogeneous model, at five levels of assortative mating. Expected
values and SEs are based on 200 replicates of 100 families each, at
each level of assortative mating. Error bars represent �1.96 SE. a,
E(v): .0218, .0217, .0224, .0228, and .0219. b, E(Z) (Zmax): 48.50,
44.49, 39.97, 34.55, and 31.12.

seen. As an illustration, table 3 shows the observed and
expected frequencies of founder mating pairs, on the
basis of disease phenotypes.

The influence of assortative mating is also as expected
in the unselected samples, with a higher proportion of
affected # affected (a#a) matings than is seen in the
random-mating sample (table 3). As before, the selected
samples show a further increase in matings with affected
parents. For example, with a disease prevalence of .125,
the expected frequency of a#a matings in a random-
mating sample would be (.125)2, or ∼.016. The ob-
served, unselected frequency was .019, which is not sig-
nificantly different from the expected value (table 3). In
a population with assortative mating accounting for
20% of the matings, the expected frequency of a#a
matings is , or ∼.038, more than2(.2)(.125) � (.8)(.125)
double that of the random-mating sample; the observed
frequency was .038. As expected, the selected samples
with 20% assortative mating have even higher frequen-
cies of a#a matings (table 3). The results of testing
model 2 for the reliability of the simulation programs
showed the same expected agreement as was shown by
the results of testing model 1 (results not shown).

Single-Locus Homogeneous Model

Parameters for the linkage analysis were based on the
selected sample of families. Disease-allele frequency was
estimated to be .05, on the basis of both the estimated
prevalence and the assumption of a dominant mode of
inheritance with complete penetrance. Unrelated family
members were used to estimate marker-allele frequen-
cies. The average value of the expected v (E[v]), and of
the expected Z (E[Z]), estimated at the position of the
maximum Z (Zmax) for each replicate, were obtained for
each level of assortative mating, on the basis of the 200
replicates of 100 families, as described above. Figure 2a
shows the mean and standard error (SE) for E(v) for the
five levels of assortative mating, .0–.8. The values are

not significantly different from one another ( )P � .46
and are quite close to the true v value between loci A
and B. Figure 2b shows the mean and SE of E(Z). With
increasing assortative mating, there is a significant de-
crease ( ) in average Zmax. The decrease isP � .0001
∼36% in the progression from random mating ( )b � .0
to . Since assortative mating increases the fre-b � .8
quency of homozygous # homozygous (h#h) mating
classes (table 3), increasing the level of assortative mat-
ing tends to increase the number of bilineal families (i.e.,
families in which disease is segregating on both sides of
the family) in a sample. Our observation can therefore
be compared with the conclusions drawn by Hodge
(1992), who showed that, under random mating, there
will be a loss of information when bilineal families are
used, particularly when phase is unknown. In these sim-
ulations, we have a combination of phase-known and
phase-unknown families. One would expect that we
would therefore see an information-loss effect that is
intermediate. Qualitatively, that is what we see, with a
36% decrease in average Zmax, somewhere between the
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Figure 3 Results of linkage parameter estimates for model 1, at
five levels of assortative mating. Expected values and SEs are based
on 200 replicates of 100 families each, at each level of assortative
mating. Error bars represent �1.96 SE. a, E(v): .144, .135, .127, .122,
and .120. b, E(Z) (Zmax): 5.80, 5.78, 5.35, 5.16, and 4.69.

10% loss in “less extreme” bilineal data sets and the
50% loss in “extremely bilineal” data sets, which were
found by Hodge.

Genetic Model 1

Parameters for the linkage analysis were again based
on the selected sample of families. The range of disease-
allele frequency in the sample was .18–.26, increasing
with the level of assortative mating in the sample. The
probability of an affected individual, given a “disease”
heterozygote, was assumed to be .65, which was con-
sistent with the data. Unrelated family members were
used to estimate marker-allele frequencies. Estimates of
v and SE for 40 replicates of 50 families per replicate
were obtained for each family structure and for each
level of assortative mating. In general there were no sig-
nificant differences between family structures, although
the large pedigrees (structure 4) tended to give higher
estimates of E(v) and smaller SEs, making the difference
between E(v) for family structure 4 of borderline sig-
nificance when compared with those for the other family

structures. The value of E(Z) varies, as might be expected
for different family structures, with structure 1 being the
least informative and structure 4 being the most inform-
ative. Because of the similarities in the estimates of E(v),
all family structures were pooled for each level of as-
sortative mating and were resampled to give 100 rep-
licates of 100 families each, for each of the five levels
of assortative mating. As mentioned above, results from
a second, independent run were comparable to those of
the first run, so the two runs were combined, resulting
in 200 replicates of 100 families each for each level of
assortative mating.

Figure 3a shows the mean and SE for E(v) for the five
levels of assortative mating, .0–.8. With an increase in
the level of assortative mating, there is a small but sig-
nificant systematic decrease (.144–.120; ) in theP � .007
value of E(v). This correlation cannot yet be explained,
but, since it is not present in the homogeneous model,
it may be an artifact of the method of analysis. For
example, the correlation in this model is sensitive to the
choice of disease-allele frequency. It may also be affected
by the assumption of a single-locus disease model rather
than the correct, two-locus model. This will be explored
in future simulation studies, by comparing these results
with those from analyses with different assumptions.
The means and SEs for E(Z) are given in figure 3b. There
is a significant ( ) decrease in average Zmax,P � .006
∼20% (5.8–4.7), in the progression from random mating
( ) to .b � .0 b � .8

Genetic Model 2

Once again LIPED was used to analyze the data, and,
on the basis of family-segregation information, a single-
locus, dominant disease trait with complete penetrance
was assumed. Despite the “complex” nature of this dis-
ease model, its construction is such that it gives the ap-
pearance of a single-locus, dominant trait. The disease-
allele-frequency range was .12–.24, again increasing
with the level of assortative mating in the sample and
the other assumptions. Again, unrelated family members
were used to estimate marker-allele frequencies. Evi-
dence for linkage is present in all samples, and among
family structures there are no significant differences in
the estimates of E(v). For this model the value of E(v) is
even greater than that in model 1. Once again, with an
increase in the level of assortative mating, there is a
slight, systematic decrease in E(v) (.268–.251; )P � .02
(fig. 4a). For this model there is a more pronounced
decrease in power (fig. 4b), with average Zmax decreasing
∼43% (7.2–4.2) in the progression from random mating
( ) to ( ).b � .0 b � .8 P � .002

After performing linkage analysis, I also analyzed the
results by using HOMOG (Ott 1984), to see whether I
could detect significant genetic heterogeneity. In all cases
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Figure 4 Results of linkage parameter estimates for model 2, at
five levels of assortative mating. Expected values and SEs are based
on 200 replicates of 100 families each, at each level of assortative
mating. Error bars represent �1.96 SE. a, E(v): .268, .263, .253, .254,
and .251. b, E(Z) (Zmax): 7.22, 6.35, 6.03, 5.17, and 4.15.

Figure 5 Separation of families, on the basis of posterior prob-
abilities of linkage and known disease genotypes d1 (blackened bars)
and d2 (unblackened bars). Number of families of each disease type
with posterior probability !a or 1a, estimated fraction of linked fam-
ilies, is displayed. Families uninformative for linkage are not shown.

the family data gave strong evidence of genetic hetero-
geneity. For example, in the random-mating sample of
200 families for family structure 2, the family structure
used by CEPH, x2 for heterogeneity was 9.61 (P �

). An estimated 45% of the families were inform-.002
ative for linkage, with . These estimates are inv � .05
reasonable agreement both with the generated values of
∼40% of families being informative for linkage and with

.v � .02
As part of the output from HOMOG, one has a pos-

terior probability for each family, indicating the prob-
ability that it is part of the subset of families informative
for linkage to marker A. This probability is based on
the Z values for the family and on its ranking among
families. Since we know the disease genotype for each
individual—that is, whether the disease is of type d1 (i.e.,
heterozygous at locus C), type d2 (i.e., heterozygous at
locus B), or type d3 (i.e., heterozygous at both loci)—we
can see what fraction of families can, on the basis of
posterior probabilities, be correctly assigned to the in-
formative subset (d2) or the uninformative subset (d1).
Figure 5 shows the results for a sample with family struc-

ture 2. We would expect that most of the families with
disease genotype d1 would have low posterior proba-
bilities of linkage and that those with disease genotype
d2 would have high probabilities. In general, this is seen
to be the case, although, by chance, some families will
be incorrectly assigned by this designation. For this
model, ∼80% of the sibships, on average, were correctly
classified as part of the subset of families “informative”
or “uninformative” for linkage to marker A, when they
were separated by the value of a, the estimated fraction
of linked families, for that sample. Based on results of
linkage to a single marker locus with only a moderate
level of heterozygosity, the ability to correctly identify
the linked subset of families is therefore somewhat
limited.

Discussion

Linkage analysis has moved from the realm of linking
sets of genetic loci, known to segregate as single-locus
Mendelian traits, to the challenges of mapping a locus
or loci known to have an effect on the determination of
disease state for a complex genetic trait. There is no
single clear-cut strategy to follow in such studies, and
many promising approaches are being explored. Since
complex traits by their very nature may have very dif-
ferent genetic mechanisms, it is unlikely that the same
approach will prove to be best for all such traits. When
family data are available, it is possible to attempt a clas-
sical linkage analysis, in which all members of the family
are included and adjustments are made, if possible, for
the assumptions generally required when linkage anal-
ysis is performed. Approaches that have been proposed
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and/or tested include (1) limiting the analysis to a single
large pedigree, to maximize the possibility of a homo-
geneous genetic basis for the trait (Egeland et al. 1987);
(2) allowing for reduced penetrance with respect to the
trait, so that heterogeneity, if present, or misclassification
can be absorbed as noise by the model (Vieland et al.
1992b, 1993); (3) using high disease-allele frequencies
in multipoint analyses, as a means of increasing the ro-
bustness of results when other genetic parameters may
be misspecified (Risch and Giuffra 1992); and (4) ana-
lyzing the data under a spectrum of models, to see how
the results vary. Other assumptions, such as the mating
structure of the underlying population, are often ig-
nored, despite the fact that, for some complex traits,
particularly behavioral traits, a certain level of assort-
ative mating may be observed. In this study I have at-
tempted, by using a simulation model, to assess the con-
sequences that some of these strategies have on the
outcome of linkage analyses. I have chosen to look at
two models in which disease is defined by two, unlinked
loci. One model resembles a threshold model, in which
a certain number of �disease� alleles at either or both of
the loci are required for expression of the disease phe-
notype. The second is a model with genetic heteroge-
neity, constructed so that we are able to analyze the
consequences of making certain assumptions at the an-
alytic stage. Since the goal of many studies of complex
traits is to try to determine the location of a locus or
loci contributing to disease state—and to do so with
enough precision so that other methods can be used to
identify and ultimately clone the gene(s)—it is important
to know whether standard techniques of linkage analysis
enable us to reach such goals.

On the basis of the results of my simulation studies,
there is little evidence to suggest that assortative mating
has a major effect on the v estimate obtained in linkage
analysis. In the homogeneous model there was no sig-
nificant difference between the estimated values of E(v)
for the five levels of assortative mating. Although we
saw some correlation between the level of assortative
mating and the value of E(v) in the two-locus models,
the variation in E(v) was minor when compared with
the E(v) inflation attributable to the two-locus disease
models. The correlation could be an artifact due to the
analysis of a two-locus disease under the assumption of
a single-locus disease, or it could be an incorrect spec-
ification of disease-allele frequency. The latter possibility
is suggested by the observation that the estimated dis-
ease-allele frequency varies with the level of assortative
mating and that the value used in the analysis had some
influence on the correlation between the level of assort-
ative mating and E(v) (data not shown). The reason for
the correlation is not yet clear and will be explored in
ongoing studies. Although, as with all simulation stud-
ies, such observations are limited to the models studied,

the characteristics of our two models are somewhat dif-
ferent and resemble situations that have been observed.
In both models and for all family structures considered,
estimates of v are close, whether the selected families are
from a random-mating population or from a population
in which there is a degree of assortative mating for the
trait being studied. In the homogeneous model, the es-
timates of E(v) are very close to those expected, and there
is absolutely no difference based on the level of assort-
ative mating. On the other hand, all three models studied
indicate that assortative mating has an effect on the
power of the analysis, with high levels of assortative
mating resulting in lower Z values. The magnitude of
this difference varies with the model, and even the sim-
ple, single-locus model shows a significant decrease in
power. Thus, when assortative mating is suspected,
larger sample sizes may be necessary for detection of
linkage. This conclusion agrees with that of Sribney and
Swift (1992) in a study showing that assortative mating
together with genetic heterogeneity can greatly increase
the sample size required for detection of linkage when
sib-pair analysis is used. Although the disease models
and methods of analysis differ from those presented here,
the basic conclusion is in agreement with that presented
here.

Since assortative mating increases the frequency of
h#h mating classes (table 3), the effect is to increase
the number of bilineal families (i.e., families in which
disease is segregating on both sides of the family) in a
sample. Hodge (1992) studied the effect of bilineality on
the results of linkage analysis for a single-gene disease
with no heterogeneity. She concluded that, although
there may be some loss of power, particularly in phase-
unknown families, it was not so great that bilineal fam-
ilies should be excluded from analyses. The results of
the present study, both those for a single-locus homo-
geneous trait and those for the two two-locus models,
are consistent with her results. The level of assortative
mating (which reflects the proportion of bilineal families)
has an effect on power. The magnitude of that effect will
vary with the underlying genetic model. Other studies,
discussed in Spence et al. (1993), using other methods
(e.g., affected-relative pairs; D. T. Bishop and R. C. Els-
ton, personal communication), have reached similar con-
clusions. Positive assortative mating does not compro-
mise the validity of linkage analysis, even if its presence
is not explicitly assumed in the analysis. Estimates of v

are not drastically altered, although some loss of power
is likely (Spence et al. 1993; members of MacArthur
Research Network I, personal communication).

The results of the present study also confirm obser-
vations of earlier studies: that (1) linkage to a disease
trait can be detected even if the disease is incorrectly
defined as a single-locus (homogeneous) trait rather than
as the correct, two-locus trait (e.g., see Greenberg 1990;
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Goldin 1992; Vieland et al. 1992a) and (2) the estimated
v will be much larger than the true v between the linked
disease-defining locus and the marker locus (e.g., see
Clerget-Darpoux et al. 1986; Risch and Giuffra 1992;
Vieland et al. 1992b, 1993). Such confirmation in new
models is worthwhile, since results from simulation stud-
ies are, by their very nature, restricted to the models
used in the simulations. Agreement of general obser-
vations derived from use of different models and differ-
ent strategies provides evidence for somewhat robust
conclusions, making them more relevant to the analysis
of real data. The presence of the second disease locus in
the current models makes it extremely difficult to cor-
rectly identify the distance between the marker and the
linked disease locus, because of the noise caused by the
second disease locus. With linkage analysis, therefore, it
may not be possible to achieve the goal of narrowing
the location of the disease locus sufficiently so that other
techniques can be effectively used to identify the gene.
If the disease is found to be genetically heterogeneous,
as in the second model discussed herein, linkage analysis
combined with heterogeneity analysis (using, e.g.,
HOMOG) will provide both an estimate of the level of
heterogeneity and a more accurate estimate of the v value
between the marker and the disease locus. It does not,
however, identify with certainty which of the families
exhibit the disease form that is informative for linkage
to the marker. In the absence of this information, it is
not possible to know which families to study further to
narrow the range of chromosomal material containing
the disease locus. As we have seen, in the model studied,
only ∼80% of the families, on average, are correctly
assigned to the informative (for linkage to marker A)
subset of families when posterior probabilities of linkage
are used, and ∼20% of the uninformative set are, by
chance, assigned to the “linked” subset. In this study,
we have limited the analysis to a single marker locus,
and this limits the amount of information that we can
obtain. By increasing the number of marker loci included
in the analysis and by choosing highly informative mark-
ers, we can devise strategies that will increase the chances
of identifying a more homogeneous sample of families
with the linked form of the disease and, hence, of iden-
tifying more precisely the chromosomal region of interest
(Falk 1993, and unpublished data). Ott (1983) has ex-
amined the effectiveness of different strategies of family
classification, given a heterogeneous trait, and has con-
cluded that the admixture test, used in the program
HOMOG, is a reasonably successful strategy.

Other strategies for identifying loci contributing to
disease may be more successful when one is dealing with
certain complex disease models. For example, methods
of affected-sib-pair analysis or affected-pedigree-mem-
ber analysis (e.g., see Weeks and Lange 1988) are not
affected by incomplete penetrance, since such analyses

are based on individuals known to be affected (the as-
sumption being that the diagnosis can be reliably made).
Such an approach was recently used to successfully iden-
tify genes contributing to type 1 diabetes that were not
in the HLA region of chromosome 6 (Davies et al. 1994).
As a trade-off, however, the power of such nonpara-
metric methods is generally lower than that of classical
likelihood methods of linkage analysis (Goldin and
Weeks 1993). It is likely that no single approach will
prove to be the best approach for the analysis of all
complex traits, and an understanding of the problems
and limitations of each will be important in deciding
how to analyze data for traits of interest.
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